[ начало ] | [ А ] |
Аллотропия (дополнение к статье)
(хим.) — понятие А. введено в науку Берцелиусом ("Jahresb.", 1841, стр. 13. "L. A.", 49, 247 [1844]; ср. Изомерия) для обозначения изомерных видоизменений элементов; одновременно он предполагал, по-видимому, применить его и к изомерии соединений, если судить по словам: "Может быть несколько причин того, что мы называем изомерией, а именно: 1) А., если... пример двух железных колчеданов обусловлен содержанием в одном S α, а в другом S β [Знаками α и β Берцелиус отличил аллотропические видоизменения серы.]; 2) различное относительное положение атомов в соединении... и 3) в некоторых случаях и А., и неодинаковое положение атомов". В настоящее время понятие А. большею частью прилагается к "изомерии" элементов; иногда, впрочем, говорят и об А. соединений, подразумевая при этом так называемую "физическую" изомерию, и наконец, только в самое последнее время в "твердых растворах" мы тоже возвратились к взгляду Берцелиуса и объясняем "изомерию", напр. стали (при различных условиях закалки), предсуществованием в ней аллотропических форм железа. Число известных случаев А. громадно. Между элементами они главным образом наблюдены для металлоидов. Только для галоидов (F, Cl, Вr и J) их неизвестно, если не принимать, однако, взгляда Лемана (см. ниже). Для металлоидов VI вертикальной группы периодической системы Менделеева известны явления А.: для кислорода (озон — см.), серы (см.) и селена (см.), но не теллура. Об А. металлоидов V группы см. Азот и Фосфор; для мышьяка известны теперь тоже три аллотропич. формы, а именно: 1) желтый прозрачный мышьяк, кристаллизующийся в правильной системе (в ромбических додекаэдрах), растворимый порядочно в сероуглероде и хуже в бензоле, глицерине и жирных маслах, быстро переходящий на свету и при нагревании во 2-е видоизменение (Schuller; Retgers, "Z. an. Gh.", 1894; Mс. Leod, "Chem. News", 70 и Linck, "Berl. Ber.", 1899); 2) мышьяк, кристаллизующийся в гексагональных ромбоэдрах, просвечивающий, отвечающий красному фосфору, и 3) мышьяк, тоже кристаллизующийся в гексагональных ромбоэдрах, но не просвечивающий, с металлическим серебристо-белым блеском, отвечающий металлическому фосфору (см. Retgers, "Z. an. Ch.", 1893 и XX, 287); для сурьмы аллотропич. форм неизвестно, и так назыв. "взрывчатая", или аморфная, сурьма оказывается содержащей значительный количества треххлористой сурьмы (E. Cohen u. W. E. Ringer, "Z. ph. Ch.", 1904). В IV группе аллотропические формы известны для углерода (см.), кремния (см.) и в III для бора (см.). Случаев А. металлов известно пока мало; наиболее изучены аллотропические формы олова (см.) и железа (см.; ср. Retgers, "Zeit. ph. Ch.", 1894), но имеются еще указания на полиморфизм цинка, иридия, палладия, серебра (?) и золота (?) (Arzruni, " B eziehungen zw. Krystallform u. ch. Zusammensetzung", 3 ч. 1-го т. Graham-Otto's "Ausf ü hrl. Lehrb. d. Ch.", стр. 36 [1898]; ср. еще M. И. Коновалов, "О видоизменениях (А.) простых тел или элементов", "Речи и отчеты Моск. Сельскохоз. Инст." за 1899 г. и E. Petersen, "Zeitsch. ph. Ch.", 1891). — Что касается А. химически сложных тел, то вопрос и для них сводится обыкновенно на явления полиморфизма (см.), так как химических различий в большинстве случаев для них не известно ["Диморфные вещества, по моему мнению, — говорит Пастер, — изомерные вещества с очень мало различным расположением молекул; потому и химические свойства их мало изменены".]. Более известные случаи полиморфизма неорганических веществ указаны в ст. Полиморфизм; из органических веществ полиморфизм наблюден на бензофеноне, уксуснокислом изогидробензоине (Цинке), дибромопропионовой кисл. (Толленс), толилфенилкетоне (фан Дорп, Цинке), метахлорнитробензоле, хлординитробензоле (1, 3, 4) (Лаубенгеймер), бромистом углероде (Леман) и мн. других (список у Arzruni. 1. с., 55—58; более новые данные у Tammann'a, "Kristallisieren u. Schmelzen", Лпц., 1903). Никакой связи между полиморфизмом и составом пока не удалось установить, что, вероятно, находит объяснение в отрывочности имеющихся наблюдений (систематичны только работы Тамманна). Что касается общих условий полиморфизма (аллотропии), то достаточно указать, что явление это связано с твердым (кристаллическим) состоянием материи и неизвестно для аморфного (жидкого), и что потому пары (?), растворы и жидкости (?), полученные плавлением аллотропных форм, тождественны; что из двух аллотропных форм одна обыкновенно находится в малоустойчивом состоянии по отношению к другой (метастабильное состояние Оствальда; оно может быть довольно постоянным благодаря пассивным сопротивлениям); только при температуре (и давлении) точки перехода обе формы одинаково устойчивы, но возможность осуществления этой последней (точки перехода) зависит от того, имеется ли случай "энантио"- или "монотропии" (см.). Исчерпывается ли возможное разнообразие только этими двумя типами, нельзя еще считать окончательно установленным, судя по многим опытным данным (ср. Энолизация); возможно, однако, что усложнение (сравнительно с теорией) кажущееся, обусловленное медленностью превращений (W. Bancrof t, "Journ. Ph. Ch.", 1898; P. Duhem, "Zeitschr. ph. Ch.", 1897). В заключение замечу, что факторами, вызывающими то или другое аллотропическое превращение, являются, при данной природе превращающегося тела, изменения температуры и давления; все такие превращения подчинены правилу фаз (см.), и, смотря по тому, имеем ли мы дело с ин- или унивариантными системами, мы можем отождествить наблюдаемые явления или с плавлением системы из одного слагаемого (конденсированные системы фан'т Гоффа, системы инвариантные), или с испарением однородной жидкости в замкнутом пространстве (при сосуществовании жидкости и пара — система унивариантная). Едва ли есть потому необходимость, как это делает Леман (Lehmaon, "Molekularphysik", I, 605—703), предполагать, что "твердое и жидкое состояние (одного и того же тела) представляют химически различные тела", что "в сущности, плавление представляет химическое разложение, а застывание — обратное образование" первоначального твердого тела, что "ни одно тело не обладает более, чем одним агрегатным состоянием, а так называемые три агрегатных состояния одного тела фактически суть три химически различных тела, хотя порядка не атомных, а молекулярных изомеров". Взгляд Лемана имеет, однако, сторонников между минералогами и изложен у Браунса (" Химическая минералогия", пер. Белянкина. под ред. Левинсона-Лессинга, 175—180 [1904]; его критику см. К. Schaum, "Die Arten der Isomerie", Марбург, 4—13 [1897]).
А. И. Г.
Page was updated:Tuesday, 11-Sep-2012 18:14:28 MSK |