[ начало ] | [ Н ] |
Неопределенные выражения
— Под этим именем в математике известны такие выражения, как 0/0; ∞/∞ и проч., которые могут быть приравнены какой угодно величине. Например, можно утверждать, что 0/0=5, и что 0/0=2, и что 0/0=10, потому что эти равенства равносильны равенствам 5∙0=0; 2∙0 = 0; 10∙0=0, которые, в свою очередь, верны, так как всякая конечная величина при умножении на нуль дает нуль. Если же функция какого-нибудь переменного x обращается при каком-либо значении этого переменного в Н. выражение, то, благодаря непрерывности изменения переменного и функции, неопределенность может оказаться только кажущейся и можно найти вполне определенный предел, к которому стремится функция при приближении переменного к упомянутому его значению. Например, выражение (x2—a2)/(x—a), если положить в нем x=a, обращается в (a2—a2)/(a—a), т. е. в 0/0; предел же, к которому стремится выражение (x2—a2)/(x—a)=x+a, т. е. 2 a (при x=a). В дифференциальном исчислении (см.) даются общие приемы для нахождения пределов неопределенных выражений. Например, для нахождения предела выражения вида 0/0 нужно взять производную числителя и разделить ее на производную знаменателя; подставив затем в полученную величину то самое значение переменного, которое обращало данную функцию в 0/0, получим искомый предел. Например, предел выражения (sin x)/x при x =0, равен результату подстановки x =0 в [(dsinx)/dx]/[(dx/dx)]=cosx; подставляя x =0 в cos x, получим 1, что и есть искомый предел.
H. Д.
Page was updated:Tuesday, 11-Sep-2012 18:16:00 MSK |